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ABSTRACT 
 

In this paper 1, the use of adaptive weights over the 
radar measurement dimensions of pulse time, antenna 
receive element, and wideband frequency is extended to 
cover a much broader range of radar detection problems 
than was supposed in the original formulation of space-
time adaptive signal processing (STAP). These problems 
include, among others (1) Adaptive beamforming in three 
dimensions; (2) Detection and 3D ISAR imaging of 
targets in general torque-free motion immersed in a field 
of tumbling clutter dipoles; (3) Detection of moving 
targets in stationary clutter using all three components of 
velocity and all three components of position; (4) 
Discrimination of accelerating targets from uniformly 
moving targets and stationary clutter; and (5) Adaptive 
signal processing with distributed and moving array 
elements. The unifying thread among these applications is 
the use of adaptive weights over the measured radar data 
to enhance scatterers that follow one class of paths while 
suppressing scatterers that follow paths not in that class. 
Applications (1) and (2) above are treated as examples. 
 

1.  INTRODUCTION 
 

The concept of space-time adaptive radar was first 
introduced as a technique for airborne clutter suppression 
by Brennan and Reed of TSC in their seminal 1973 paper 
(Brennan and Reed, 1973). The basic problem was how 
best to use a linear phased-array receive antenna attached 
to an airborne radar platform to detect moving targets, 
while suppressing the strong return from stationary 
ground clutter. It was recognized by these authors that 
stationary clutter could be strongly suppressed only by 
exploiting the correlation between the Doppler shift, as 
indicated by the phase progression of the radar echo 
across pulses, with the angle off the array antenna, as 
indicated by the phase progression of the radar echo 
across receive elements. A novel criterion was developed 
by which complex weights over the radar measurement 
dimensions could be calculated based on the measured 
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radar data. These weights were chosen to satisfy an 
optimum detection criterion that reduced to inverting a 
certain complex matrix formed from the radar data. 

In this paper, the use of adaptive weights over the 
radar measurement dimensions of pulse time, antenna 
receive element, and wideband frequency is extended to 
cover a much broader range of radar detection problems 
than was supposed in the original formulation of space 
time adaptive signal processing (STAP) (Brennan and 
Reed 1973, Ward 1994). These problems include, among 
others (1) Adaptive beamforming in three dimensions; (2) 
Detection and 3D ISAR imaging of targets in general 
torque-free motion immersed in a field of tumbling clutter 
dipoles; (3) Detection of moving targets in stationary 
clutter using all three components of velocity and all three 
components of position; (4) Discrimination of 
accelerating targets from uniformly moving targets and 
stationary clutter; and (5) Adaptive signal processing with 
distributed and moving array elements. The unifying 
thread among all applications is the use of adaptive 
weights over the measured radar data to enhance 
scatterers that follow one class of paths while suppressing 
scatterers that follow paths not in that class. These paths 
are defined in a generalized coordinate system appropriate 
to the application, and classes are defined according to a 
conditional probability density function in the path space. 
These concepts generalize the original problem of 
separating stationary and linearly moving targets using 
adaptive weights, and suggest a number of entirely new 
applications. 

In this paper, we show that the calculation of 
adaptive weights can be formulated without introducing 
any restrictive assumptions about the space-time 
configuration of the array elements, and without limiting 
the classes of paths to uniform linear motion. The 
adaptive criterion for determining the weights over pulse 
time, element and wideband frequency is derived from 
Bayes rule by optimizing the probability of detecting a 
target of one generalized motion class in the measured 
radar data while suppressing detection of targets in the 
other classes, the detection classes being defined by class-
conditional probability densities over the entire space of 
possible paths, called the path space. The result is a 
matrix optimization problem based on the generalized 
Rayleigh quotient. 
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In Section 2, we present the ideas of generalized 
coordinates, path space, and classes in path space.  These 
concepts unify the mathematics for various applications.  
We then derive the algorithm for calculating adaptive 
weights.  In Section 3, we present simulated results for 
two different applications.  The first is a demonstration of 
beamforming using a distributed antenna array. The 
beamforming problem can be viewed as a case of the 
general theory in which a scatterer path is uniquely 
determined by its position in some fixed reference frame, 
meaning that all the scatterers of interest are stationary. A 
region of space is selected in which scatterers should be 
enhanced and a different region is selected in which 
scatterers should be suppressed. Next, we consider the 
problem of various objects moving in general states of 
torque-free motion in the presence of large numbers of 
tumbling clutter dipoles (Cuomo et al 1999, Mayhan et al 
2001). Here, the distinguishing characteristic of the clutter 
scatterers is that they move uniformly along circles in 
space while the target object precesses and spins.  
 

2.  THEORY OF GENERALIZED ADAPTIVE 
RADAR SIGNAL PROCESSING 

 
We now develop an extension of the theory of 

adaptive radar that combines the concepts of STAP and 
radar imaging. The result is a scheme for separating 
scatterers that move according to one class of space-time 
trajectories from scatterers that move according to another 
class of trajectories or paths. These paths are readily 
visualized through motion-invariant generalized 
coordinates called the path space.  The introduction of 
generalized coordinates admits many applications 
including detection of moving targets in stationary ground 
clutter using three velocity components, three position 
components, and netted radar; and detection and 3D 
imaging of targets undergoing general torque-free motion 
immersed in a field of tumbling clutter dipoles. 

 
2.1  Phase Histories in Generalized Coordinates 

 
Let the symbol q represent the set of parameters that 

describe the path a particular scatterer takes over time.  
Since q defines a space-time path, we refer to q as the 
scatterer’s generalized coordinates. Several examples of 
generalized coordinates include: 

 
• For stationary scatterers, q is the three-

dimensional position vector x, which describes 
the scatterer position at all times; 

• For scatterers in linear motion, q = (x0, v) is a 
six-dimensional vector comprised of the 
scatterer’s position x0 at some reference time and 
the three-dimensional velocity vector v; 

• For scatterers attached to a rigid body in torque-
free motion, q = (Ω, sb) is comprised of motion 
parameters Ω and a position vector sb. The vector 

Ω contains six parameters to describe the motion 
of the body’s center of mass as well as 
parameters that describe the motion of the body’s 
principal axes in space.  The vector sb describes 
the position of the scatterer relative to the 
principal axes of the rigid body. 

 
Let the space-time position of a scatterer throughout 

the coherent dwell be written symbolically as ( )|t qx  
where t is a pulse time. The generalized multistatic data 
cube is also defined as ( ), ,z f e t , where f is a wideband 
frequency and e is the index of a receive element. Thus 
the quantity z is the raw measured radar data, sometimes 
called I&Q data, collected during a coherent processing 
interval (CPI) over (possibly) several receive elements. 
The geometry-dependent signal phase due to the scatterer 
is 
( )

( ) ( ) ( ) ( ){ }

, , ,

2
| , |

q f e t

f
t t q e t t q

c

φ

π

=

− − + −T x R x
  (1) 

where ( )tT denotes the radar transmitter trajectory 
throughout the coherent dwell and ( ),e tR denotes the 
trajectory of the “eth” receive element. 
 

Next, a class of paths C is defined by specifying a 
class-conditional probability density ( )p q C  in the space 
q of generalized coordinates, which we may call the path 
space. These class-conditional probability densities in 
path space provide a unified formal language by means of 
which the radar designer can precisely specify any 
number of signal and interference classes on the basis of 
physical features of the postulated scatterer motions, 
independent of the description of the radar measurement.  
The design technique has broad applications to 3D 
adaptive beamforming, six-dimensional (position plus 
velocity) air- and ground-moving target detection, three-
dimensional adaptive ISAR with one or more radars and 
many other problems. The goal of the adaptive process is 
to design window functions that selectively image 
scatterers belonging to one class, denoted C, while 
suppressing scatterers belonging to any other classes 
(collectively denoted C′). The designer has the freedom to 
define any number of such classes.   
 
2.2  Adaptive Algorithm 
 

The complex quantity 
 
( ) ( ) ( ) ( ), , , , , , exp , , ,

t f e
z q w w f e t z f e t i q f e tφ⎡ ⎤Φ = −⎣ ⎦∑∑∑

  (2) 
 
admits the interpretation of the complex amplitude 
corresponding to the presence of a scatterer following the 



path q in the w-filtered data cube z.  Let the adaptive 
weights corresponding to a particular class C of scatterers 
be w(C). The correspondence between the window and 
the class is intended to imply that the image viewed 
through the window w(C) should show scatterers in q-
space whose motions belong to class C but suppress 
scatterers whose motions correspond to other classes 
(collectively, C′). It is convenient to introduce the Dirac 
‘bra’ and ‘ket’ symbols for complex row and column 
vectors (Dirac 1981, Shankar 1994).  Using this notation, 
we introduce the column vector ,q z  of dimension 
nf nent × 1. The nth element of the vector is the nth sample 
of the data cube (ordered in any convenient way), phase-
corrected according to the phase history of a scatterer 
following path q. That is, the elements of ,q z  are 
 

( ) ( ), ,
, , , exp , , ,

f e t
q z z f e t i q f e tφ⎡ ⎤= −⎣ ⎦ . (3) 

 
The dual labels q and z in the symbol on the left-hand side 
of (3) indicate that the vector depends both on the model, 
through q, and the data, through z.  We will use the 
shorthand symbol q  to indicate this vector in the 
remainder of this paper wherever no confusion is likely to 
arise, but the dependence of the quantity on the measured 
data z should be borne in mind.  Indeed, it is through this 
dependence on the measured data that the algorithm to be 
developed can be said to be adaptive. Similarly, we define  

( )w C  as the class-conditioned adaptive weights 
rearranged into row vector form. Hence, (2) is now 
denoted 
 

 ( ) ( ), , ,z q w w C q zΦ = . (4) 

 
We will likewise omit the reference to the particular class 
C (for brevity) and simply write w when no confusion 
is likely to arise.  Nonetheless, it should be remembered 
that there will be a separate weight vector for each class. 
Finally, we define the likelihood that a scatterer following 
path q is present in the measured data z as the normalized 
power in the C-filtered image  
 

 ( ) ( ) ( )| , , ,p z q C w C q z q z w C= . (5) 

 
This is consistent with the standard definition of 
likelihood (Sivia 2006) as long as the required 
normalization is absorbed into the adaptive weights, i.e. 

1w w =  .  The brighter the image of a particular path in 
the path-space q, the more likelihood we assign to the 
proposition that a scatterer following that path is present.  
These statements are sufficient to qualify the normalized 
power 

2
q w w q q w=  in the filtered image as a 

likelihood in the standard definition and formal notation 
(Cox 1961).  
 

The adaptive weights are determined by the condition 
that the probability of a scatterer of class C given the 
radar measurement z is a maximum.  The quantity that 
must be maximized by the choice of weights ( )w C  is 
the probability of class C conditioned on the data z, 
denoted by ( )P C z . We can apply the rules of 
probability theory to express this in terms of the suitably 
marginalized joint distribution, ( ), ,p C z q , according to 
 

( ) ( )
( )

, ,

, ,
C

dq p q z C
P C z

dq p q z C
′

=
′

∫
∑∫

. (6) 

 
The summation in the denominator is over all classes, and 
the integrations are over distinct sets of motion 
parameters. The joint distribution ( ), ,p C z q  can be 
factored by applying the product rule for probabilities. 
Specifically, the joint distribution of two propositions 1π  
and 2π  can be expanded by the product rule as  
 

( ) ( ) ( )1 2 1 2 1, |p p pπ π π π π= . (7) 
 
In order to expand ( ), ,p C z q , we let 1 Cπ =  and 

2 z qπ = . Then, two successive applications of the 
product rule give 
 

( ), , ( ) ( | ) ( | , )p C z q p C p q C p z q C= . (8) 
 
Therefore, substituting (8) into (6), we obtain  
 

( ) ( ) ( ) ( )
( ) ( ) ( )

| | ,

| | ,
C

p C dq p q C p z q C
P C z

p C dq p q C p z q C
′

=
′ ′ ′
∫

∑ ∫
. (9) 

 
Finally, we use the definition of ( )| ,p z q C  in (5) as the 
normalized C-filtered image power in path-space. The 
weights are taken to the outside of the sums and integrals, 
expressing the inner products in the numerator and 
denominator of (9) in the form | |w wθ , where θ 
denotes a square matrix.  This gives  
 

( )
( ) ( )

( ) ( )

|

|
C

w dq q p C p q C q w
P C z

w dq q p C p q C q w
′

⎡ ⎤
⎣ ⎦=

⎡ ⎤′ ′⎢ ⎥
⎣ ⎦

∫

∑∫
. (10) 

 
We wish to find the weights ( )w C  that maximize 

(10). Therefore, the solution to finding the adaptive 
weights consists of three steps: 

 



1. Define the classes of motion to be separated in a 
path space of generalized coordinates q by 
specifying a set of class-conditional probability 
densities ( )|p q C ; 

 
2. Compute the class-specific matrices A and B 

from the specified motion class definitions and 
the measured coherent radar data z according to 
 

 
( ) ( )

( ) ( )
|

|
C

dq q P C p q C q

dq q P C p q C q
′

=

′ ′=

∫
∑∫

A

B
; (11) 

 
3. Solve the variational problem 

 

 0
w w
w w

δ
⎡ ⎤

=⎢ ⎥
⎢ ⎥⎣ ⎦

A
B

. (12) 

 
The quantity to be maximized is a quotient of 

quadratics of a kind that has been studied extensively in 
connection with applications of the Rayleigh-Ritz 
variational principle of quantum mechanics, and also in 
the context of the finite element method (Strang 1988). 
The solution weight vector is the largest eigenvector 
associated with the two-operator eigenvalue problem 
 

 w wλ=A B . (13) 
 
While the primary eigenvector of (13) will maximize the 
ratio (12), other eigenvectors may also be useful.  In fact, 
the primary eigenvector likely will not span the entire q-
space of the desired class, and more eigenvectors will be 
needed to image all the paths in the desired class. This 
property will be addressed in the next section where we 
demonstrate the ability of our adaptive algorithm. 
 
 

3.  SIMULATION RESULTS 
 

We now demonstrate the ability of the above 
adaptive algorithm to image scatterers following a desired 
class of paths while rejecting other scatterers following 
undesired paths.  We begin with a demonstration where 
scatterers are imaged or suppressed based only on their 
position.  In this demonstration, the radar measurements 
are collected over many radar locations randomly 
distributed in the far field around the plane being imaged.  
In the second demonstration, we use the generalized 
coordinates to define two classes – one for a fixed body in 
torque-free motion and another for tumbling clutter 
dipoles.  We show that the dipoles can be suppressed 
while successfully imaging scatterers on the fixed body. 

The simplest example of a path space is one in which 
all of the scatterers are stationary in a particular frame so 
 

that the three-dimensional vector x relative to that frame 
is sufficient to specify the trajectory of any scatterer 
throughout the coherent interval.  This corresponds to the 
first example of generalized coordinates in the list from 
Section 2. The problem of detecting scatterers in certain 
regions of space while suppressing scatterers in other 
regions of space is an extension of the idea of 
beamforming.  At the same time, it is the simplest 
nontrivial example of the generalized adaptive theory. 
 
3.1  Demonstration of Adaptive Beamforming (2D) 
 

In this demonstration, approximately 122 scatterers 
were distributed over a square planar surface measuring 
1.2m per side.  The first 100 scatterers were distributed 
randomly while the next 22 scatterers were arranged in a 
letter ‘A’ (for Arizona). 750 radar elements were 
randomly distributed in angle around the scattering 
surface.  The elements were in the same plane as the 
scatterers and were located in the far field of the 
scattering surface.  The frequency of operation was 
chosen to be 3 GHz.  

 
The path-space classes were defined as follows.  

Several sub-regions within the 1.2m × 1.2m image plane 
were assigned to the “desired” class C.  These sub-regions 
sampled the outline of the letter ‘A’, and any point q = x 
within 0.04m of the center of a sub-region was defined as 
a member of the desired class. All points located greater 
than 0.04m away from the center of these sub-regions 
were assigned to the undesired class C′.  This setup tests 
the adaptive algorithm’s ability to compute a window 
function that passes scatterers located in the sub-regions 
but reject scatterers outside the sub-regions. 

 
For each class, the A and B matrices were computed 

numerically.  For uniformly distributed points within each 
path space, the phase history ( ),q eφ of a scatterer at each 
point was calculated.  Then, the “steering vectors” 

( )exp ,q i q eφ⎡ ⎤= ⎣ ⎦a  were computed, and the matrices A 
and B were calculated according to 
 

 H
q q

C∈
= ∑

q
A a a  (14) 

 H
q q

C ′∈

= ∑
q

B a a . (15) 

 
Figures 1-4 show the results from this experiment.  

First, Figure 1 shows the image that results from direct 
correlation-based processing without adaptive windowing.  
As one can see from the figure, energy is distributed 
throughout the image area.  Figure 2 shows the image that 
results from the adaptive algorithm described above using 
only the primary eigenvector of the generalized 
eigenvalue problem defined by A and B. Although several 
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Fig. 1. Image of scattering plane using non-adaptive 

correlation (matched filtering). 
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Fig. 2. Image of scattering plane using principal 

eigenvector as the adaptive weights. 
 
 
sub-regions of the image plane were assigned to the 
desired class, the image in Figure 2 shows energy highly 
concentrated into only two locations.  These were the two 
regions contained within class C that had the most 
scattering energy and, therefore, were the most important 
regions to be represented by the first eigenvector. 

 
Figure 3 shows the image that results from using only 

the third eigenvector.  This image shows energy from the 
other sub-regions of path space assigned to class C.  
Finally, Figure 4 shows the result when images are 
formed from each of the first 22 eigenvectors, and then 
summed together (in magnitude).  The image in Figure 4 
clearly shows the letter ‘A’ that was outlined by the 
definition of the desired class C. 

 

Image Plane x−Coordinate

Im
ag

e 
P

la
ne

 y
−

C
oo

rd
in

at
e

−0.6 −0.3 0 0.3 0.6
−0.6

−0.3

0

0.3

0.6

 
Fig. 3. Image of scattering plane using third 

eigenvector as the adaptive weights. 
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Fig. 4. Image formed by adding (in magnitude) images 

formed from the first 22 eigenvectors. 
 
 
3.2 Torque-Free Objects Immersed in Clutter 
 

In this demonstration, we show the ability to suppress 
clutter scatterers modeled as dipoles in a tumbling motion 
from a target object in a different motion state.  Both the 
target and clutter dipoles are located within the same 1.5 
meter sphere.  The system is modeled as having a 
coherent processing interval (CPI) of 8.5 seconds, a center 
frequency of 3 GHz and a bandwidth of 300 MHz. The 
sphere of scatterers is located at the origin of the inertial 
frame coordinate system while the single radar is located 
in the sphere’s far field.   

 
As mentioned above in Section 2, the generalized 

coordinates that describe a path in torque-free motion 
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Fig. 5. Image of the base of a cone in torque-free 

motion immersed in clutter using matched filtering. 
 
include a position vector that describes a scatterer’s 
position in a coordinate frame fixed to the rigid body.  
The generalized coordinates also include parameters that 
describe the motion of the fixed body’s center of mass, as 
well as motion parameters that describe the motion of the 
fixed body’s coordinate frame relative to an inertial 
coordinate frame. 

Let the generalized coordinates of a scatterer located 
on a fixed body in torque-free motion be denoted as in 
Section 2 by ( ), bq = Ω s . The time-varying position of 
the scatterer in Earth-centered inertial coordinates is 

 
 ( ) ( ) [ ]( )E B |g bt t t= +x c Ω s  (16) 

 
where ( )g tc  is the body’s time-varying center of mass, 
and E B⎡ ⎤

⎢ ⎥⎣ ⎦ denotes the time-varying orthogonal matrix 
that transforms vectors in the body reference frame B to 
vectors in the inertial frame E.  If the radar location is 
defined by the vector r, the time-varying range to the 
scatterer is 
 

 ( ) ( ) ( ) [ ]( )E B |g bR t t t t= − = + −x r c Ω s r . (17) 
 
When approximated with a first-order Taylor expansion 
around sb = 0, the range becomes 
 

 ( ) ( ) [ ]( )( ) ( )T
ˆE B |g bR t R t t t≈ + Ω s r  (18) 

 
where ( )gR t  and  ( )ˆ tr  are the time-varying range and 
unit vector from the radar to the object’s center of mass, 
respectively.  We assume in our simulations that the 
directional unit vector changes little during a coherent 
processing interval allowing us to ignore the time 
dependence of ( )ˆ tr .  We further assume that the data 
have been range-corrected to remove the delay due to 
translational motion of the center of mass (Mayhan 2001).  
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Fig. 6. Image of the base of a cone in torque-free 
motion immersed in clutter using principal 
eigenvector as the adaptive weights. 

 
In our experiment, the target is modeled as a cone 

with six scatterers uniformly placed around the cone’s 
base.  The z-axis of the fixed body frame passes through 
the center of the cone’s base and runs through the tip of 
the cone.  The x-y plane of the fixed body frame is 
parallel to the base of the cone.  The tip of the cone 
wobbles, or precesses, around the inertial z-axis, and the 
cone spins about its own z-axis.  

 
Clutter is modeled as a scattering dipole. The 

scattering from the dipole is assumed to come primarily 
from both ends.  Therefore, the dipole is modeled as two 
equal scatterers at opposite ends of a fixed axis.  The 
motion of the dipole is precisely an end-over-end motion, 
though the orientation of the tumbling plane is random.  
100 dipoles were randomly placed in the 1.5m-radius 
sphere with random tumbling orientations.  The scattering 
from a single end of the dipole was about the same RCS 
as the scattering from one of the target scatterers. 

The clutter dipole suppression matrix B was 
calculated in two parts by separating the contributions due 
to location of the fixed body’s center of mass and to the 
rotational motion of the fixed body’s axes in the inertial 
frame.  The component due to the location of the center of 
mass can be calculated analytically.  The component due 
to rotation motion was calculated numerically by training 
over scatterers with varying rotational parameters. 

 
To form an image of a rotating target, the image must 

be referenced to the frame of the fixed body.  Therefore, 
we imaged the base of the cone in fixed body coordinates 
where the cone scatterers were located. Figure 5 shows 
the result when the image is formed non-adaptively using 
straight correlation or matched filtering.  One can see in 
Figure 5 that the presence of dipoles in the same imaging 
volume has obscured any structure that may correspond to 
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Fig. 7. Image of the base of a cone in torque-free 

motion immersed in clutter using sum of images from 
first five generalized eigenvectors. 

 
 
the base of the cone.  Figure 6 shows the result when the 
adaptive algorithm is applied using only the first 
eigenvector of the generalized eigenvalue problem.  
Figure 7 shows the result when the first five eigenvectors 
are used to generate five images, which are then summed 
in magnitude.  The adaptive weights are clearly able to 
suppress the dipoles’ tumbling motion while imaging 
scatterers in a different motion state. 
 

4. CONCLUSIONS 
 

We have presented and demonstrated an innovative 
extension to adaptive signal processing that can be 
applied to a wide range of circumstances.  The new 
algorithm relies on definitions of desired (target) and 
undesired (clutter) classes according to their generalized 
coordinates in path space.  The makeup of the generalized 
coordinates varies with application. In beamforming 
applications with no scatterer motion the generalized 
coordinates are simply a position vector in a common 
reference frame.  In applications involving torque-free 
motion, the generalized coordinates includes descriptions 
of scatterers in the fixed body’s frame of reference, the 
motion of the body’s center of mass, and the motion of 
the body’s frame relative to an inertial frame.  

 
Regardless of the application, the generalized 

coordinates describe the “path” that a scatterer takes  
 
 
 
 
 
 
 
 
 

during the radar CPI.  Then, the class-conditioned pdf 
quantifies the likelihood that a scatterer belonging to a 
certain class would be following a particular path. By 
interpreting the image that results from 
windowed/weighted data as a class-conditioned  
probability density, a probability expression can be 
derived and used as the objective function in calculating 
the optimum weight function. 

 
The new adaptive algorithm is very versatile as 

indicated by the simulation results that were presented.  
The scenarios that were simulated included both 
beamforming for stationary scatterers as well as a target 
object in torque-free motion and immersed in clutter 
dipoles in different motion states.  In both cases, the 
adaptive algorithm successfully imaged scatterers in the 
desired class while suppressing scatterers in an undesired 
class.   
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